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Combined Radar-Radiometer Algorithm Input 
•  Dual-Frequency Precipitation Radar (DPR); Ku & Ka bands 
•  GPM Microwave Imager (GMI); 10 – 183 GHz. 
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                           Algorithm Status 
 
•  Basic algorithm framework unchanged:   

 Ensemble filtering of ZKu-constrained solutions using 
      ZKa, PIAKu;Ka, and GMI TB’s. 
 
•  GMI radiances are resolution-enhanced using  
      regression-based filters. 
 
•  Hogan & Battaglia model for multiple-scattering in radar 

 simulations is utilized where needed. 
 
•  In process, improvements in 

 - surface characterization 
    - impacts of non-spherical particle properties. 
     - a priori particle size distribution properties. 
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Precip. Estimates from Hurricane Edouard 

Ku+GMI Rain Rate Ku+Ka+GMI Rain Rate 



TB Simulations from Hurricane Edouard 
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TB Simulations vs. Observations over Ocean 

from Mircea Grecu 

183.3+/-3 V 183.3+/-7 V 



TB Simulations vs. Observations over Land 

from Mircea Grecu 

183.3+/-3 V 183.3+/-7 V 
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Comparison of GPM Mean Precip. vs. GPCP 
Ku+GMI Sep 2014 Mean 

GPCP Sep 2014 Mean 

 Ku+Ka+GMI Sep 2014 Mean  

Zonal Means 
Ku+GMI 
Ku+Ka+GMI 

2.41 mm d-1 

2.28 mm d-1 

Dave Bolvin 

GPCP 2.63 mm d-1 



Ground Radar Comparisons for Sep 2014 

MRMS are gage-calibrated  
NEXRAD rain rates 

Pierre Kirstetter, Bart Kelley, 
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                      Concluding Remarks  
• Combined algorithm V4 should be ready for 
   release 1 month after radar L2 algorithm stabilizes. 
 
• Will work with radiometer team to produce 
   empirical databases. 
 
• Extend validation. 
 
• Improved physical and statistical 
   parameterizations are still key objectives: 

 - sub footprint-scale precip variability.   
 - radar multiple-scattering effects. 
 - A priori PSD assumptions; PSD representation. 

    - impacts of non-spherical particles. 
 - surface characterization. 



Extras 



Algorithm “Concept”  ---   Ensemble (Kalman) Filter 

             Input                            Ensemble Solution


Z 

alt. 
observed Ku  
reflectivity 
profile 

assumed random 
  water vapor, 
  cloud water,  
  µ, Nw profiles 

precip. 
water 
content 
profiles invert DM 

 profiles 

assumed random 
surface emissivity 
   

simulated 
Ka reflectivity 
profiles, 
Ku/Ka PIA’s 

simulator 

simulated 
TB’s 

Ensemble 
   Filter 

filtered  
precip. 
water 
content 
profiles 

uses	  covariances	  
of	  water	  contents	  
and	  simulated	  
observa3ons	  

observed Ka 
reflectivity profile,  
Ku/Ka PIA’s, and  
TB’s from GMI 

Z 

alt. 

solution 
 profile 
(mean) 

σ



Comparison of GPM Mean Precip. Estimates 
Ku+GMI Sep 2014 Mean 

Ku+GMI minus Ku+Ka+GMI 

 Ku+Ka+GMI Sep 2014 Mean  

Zonal Means 
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2.41 mm d-1 
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MRMS Surface  
Rain Rate 

collocated	  MRMS	  	  
from	  Pierre	  Kirste3er	

Early Ground Validation Studies 
GPM vs. MRMS Radar Product; 16 May, 0.1 deg. 
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MRMS Surface  
Rain Rate 

collocated	  MRMS	  	  
from	  Pierre	  Kirste3er	

Early Ground Validation Studies 
GPM vs. MRMS Radar Product; 29 May, 0.1 deg. 
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Estimated Rain from Ku+GMI vs. Ku+Ka+GMI 
                               
Stratiform Precipitation 
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                                 Overview 
 
•  Basic algorithm framework:   

 Ensemble filtering of ZKu-constrained solutions using 
      ZKa, PIAKu;Ka, and GMI TB’s. 
 
•  Sub-footprint-scale variability modeled using extended      
     ensembles. 
 
•  Simple Ka multiple-scattering parameterization. 
 
•  Preliminary evaluation of estimates. 
 



Typhoon Neoguri on 4 July 2014, Fitting of Data  

Observed Ku PIA (from SRT) Ku+GMI Est. Ku PIA Ku+Ka+GMI Est. Ku PIA 

Observed 19 GHz TB Ku+GMI Est. 19 GHz TB Ku+Ka+GMI Est. 19 GHz TB 



Estimated Nw from Ku+GMI vs. Ku+Ka+GMI 

Convective Precipitation 
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MRMS Surface  
Rain Rate 

collocated	  MRMS	  	  
from	  Pierre	  Kirste3er	

Beginning Ground Validation Studies 
GPM vs. MRMS Radar Product; 16-31 May; 0.5 deg. 

Ku+GMI Surface Rain Rate Ku+Ka+GMI Surface Rain Rate 



         “Downscaling” to Represent Beamfilling 
 
 
No beamfilling: 
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         “Downscaling” to Represent Beamfilling 
 
With beamfilling: 
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Multiple Scattering Effects 
Ku-Band Reflectivity 
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SCATTERING OPT. DEPTH 



Want < 50% error for 50 km res. estimates at 1 mm h-1

           < 25% error for 50 km res. estimates at 10 mm h-1


Algorithm Testing (Pre-Launch) 
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Synthetic Ocean Data; Statistics at 50 km Resolution 
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Comparison of TRMM and GPM Rain Estimates 
GPM Algorithm Applied to TRMM Ku+TMI 

GPM Algorithm Applied to GPM Ku+GMI GPM Algorithm Applied to GPM Ku+Ka+GMI 

GPM Orbit 
#437 

TRMM Orbit 
#93202 

cross-over ~30 s apart 



Typhoon Neoguri on 4 July 2014, Fitting of Data  

Observed Ku PIA (from SRT) Ku+GMI Est. Ku PIA Ku+Ka+GMI Est. Ku PIA 

Observed 89 GHz TB Ku+GMI Est. 89 GHz TB Ku+Ka+GMI Est. 89 GHz TB 



Monthly Zonal Mean Estimates for April 2014 

Ku-only radar rain depth  (80.0 mm) 
2BCMB Ku+GMI radar rain depth   
(78.4 mm) 

from John Stout 



Algorithm Theoretical Basis 
Generalized Hitschfeld-Bordan Method 
     (applied to Ku-band data only) 


  • original Hitschfeld-Bordan fast, but reqs.   k  =  α Z β . 

   

          • iterative techniques typically slow.





  • alternative interative procedure, assuming No(r) and approximate    

             approximate β from k-Z relation:
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Algorithm Theoretical Basis 

Correct DPR ZKu for attenuation 
due to cloud and water vapor. 

Set true Z = DPR ZKu . 

qS(rs)<ζmax? 
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Generalized  
Hitschfeld-Bordan  
Method 
• procedure is fast

because iterative

equation is a close

approx. to H-B solution.



• note procedure

avoids instability by

rescaling No(r), if needed. 
 
• yields Do(r), given No(r),

µ, and ZKu .  





(2) “Internal” Synthetic Retrieval Tests

  

Data:  use TRMM PR to synthesize DPR & GMI observations.









  

  





    





Tests:   e.g., sensitivity to sensor/environment information,

                a priori assumptions.  
 
      

Test Plan Outline 
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For CoSMIR’s GMI simulator operating mode the characteristics are: 
 
Channel Set:  50.3 H GHz,  

    52.8 H,  
    89 V&H,  
    165.5 V&H,  
    183.3±1 H,  
    183.3±3 H, and  
    183.3±7 H GHz.  

 
Scan Modes:  
All receivers and radiometer electronics are housed in a small cylindrical 
scan head (21.5 cm in diameter and 28 cm in length) that is rotated by a 
two-axis gimbaled mechanism capable of generating a wide variety of scan 
profiles. The scan head is programmable for conical scan at angles 
between 0 - 53.6°, across scan, or a combination/hybrid of both. For MC3E 
and GCPEx, the hybrid conical+cross track mode will be used. 
 
In Flight Calibration: 
CoSMIR has two external (but enclosed in the housing) targets at ~ 328° K 
and at ambient temperature (~ 250° at ER-2 aircraft cruising altitudes). 
Accuracy is +/- 1K. 
 
Field of View: 
~ 4° beam width (gives a nadir footprint at the surface of about 1.4 km at 
ER-2 cruising altitude of 20 km)   

For CoSMIR’s GMI simulator operating mode the characteristics are: 
 
Channel Set:  50.3 H GHz,  

    52.8 H,  
    89 V&H,  
    165.5 V&H,  
    183.3±1 H,  
    183.3±3 H, and  
    183.3±7 H GHz.  

 
Scan Modes:  
All receivers and radiometer electronics are housed in a small cylindrical 
scan head (21.5 cm in diameter and 28 cm in length) that is rotated by a 
two-axis gimbaled mechanism capable of generating a wide variety of scan 
profiles. The scan head is programmable for conical scan at angles 
between 0 - 53.6°, across scan, or a combination/hybrid of both. For MC3E 
and GCPEx, the hybrid conical+cross track mode will be used. 
 
In Flight Calibration: 
CoSMIR has two external (but enclosed in the housing) targets at ~ 328° K 
and at ambient temperature (~ 250° at ER-2 aircraft cruising altitudes). 
Accuracy is +/- 1K. 
 
Field of View: 
~ 4° beam width (gives a nadir footprint at the surface of about 1.4 km at 
ER-2 cruising altitude of 20 km)   

0 oC

Evaluating Snow Physics Using HIWRAP and CoSMIR in MC3E

• Retrieve precip profile

   (PSD’s) using HIWRAP.
 HIWRAP

in	  situ	  

• Compute consistent

  microwave scattering

  properties in profile.



• Simulate upwelling 

  brightness temperatures

  at 89, 165.5 GHz.



• Compare to CoSMIR obs.



Note: brightness temps

aren’t sensitive to variations

of surface emission and

liquid precip if light rain is 

present => scattering 

signatures discriminate 

snow particle models.


CoSMIR
TB’s

• Assign scattering model.
 W. Olson, 
K.-S. Kuo, 
L. Tian, 
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G. Heymsfield, 
J. Munchak 

(Ku/Ka) 



Radar Retrieval and Simulation of TB’s Using Spherical/Aggregate Ice

Kuo aggregates ρ = 0.1 g cm-3 spheres 

(Aggregates)

ρ = 0.1 g cm-3 spheres Kuo aggregates 
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from Joe Munchak 


